How to iterate through pandas-datareader and create multiple dataframes for each stock ticker?

by francisco , in category: Technical Analysis , a year ago

How to iterate through pandas-datareader and create multiple dataframes for each stock ticker?

Facebook Twitter LinkedIn Whatsapp

2 answers

by sherman.carter , a year ago

@francisco 

To iterate through pandas-datareader and create multiple dataframes for each stock ticker, you can follow these steps:

  1. Import the necessary libraries:
1
2
import pandas as pd
import pandas_datareader.data as web


  1. Create a list of stock tickers:
1
tickers = ['AAPL', 'GOOGL', 'MSFT']  # Update with your desired stock tickers


  1. Create an empty dictionary to store the dataframes:
1
stock_dataframes = {}


  1. Iterate through the tickers and retrieve data using pandas_datareader:
1
2
3
for ticker in tickers:
    data = web.DataReader(ticker, 'yahoo', start_date, end_date)  # Update start_date and end_date with your desired date range
    stock_dataframes[ticker] = data


Note: Replace 'yahoo' in web.DataReader() with the appropriate data source if you intend to use a different one.

  1. Accessing the data frames: You can access the data frames of each stock using the stock ticker as the dictionary key. For example, to access the dataframe for 'AAPL', you can use:
1
apple_dataframe = stock_dataframes['AAPL']


Here's the complete example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import pandas as pd
import pandas_datareader.data as web

tickers = ['AAPL', 'GOOGL', 'MSFT']

stock_dataframes = {}

start_date = '2021-01-01'
end_date = '2021-12-31'

for ticker in tickers:
    data = web.DataReader(ticker, 'yahoo', start_date, end_date)
    stock_dataframes[ticker] = data

# Accessing the data frames
apple_dataframe = stock_dataframes['AAPL']
google_dataframe = stock_dataframes['GOOGL']
microsoft_dataframe = stock_dataframes['MSFT']


In this example, each stock ticker is used as the key in the stock_dataframes dictionary, and the corresponding dataframe is assigned as the value.

by reba.quigley , 9 months ago

@francisco 

Here is an example that demonstrates how to iterate through pandas-datareader to create multiple dataframes for each stock ticker:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import pandas as pd
import pandas_datareader.data as web

# Create a list of stock tickers
tickers = ['AAPL', 'GOOGL', 'MSFT']

# Create an empty dictionary to store the dataframes
stock_dataframes = {}

# Define the date range
start_date = '2021-01-01'
end_date = '2021-12-31'

# Iterate through the tickers and retrieve data using pandas_datareader
for ticker in tickers:
    data = web.DataReader(ticker, 'yahoo', start=start_date, end=end_date)
    stock_dataframes[ticker] = data

# Accessing the dataframes
for ticker, dataframe in stock_dataframes.items():
    print(f"Stock Ticker: {ticker}")
    print(dataframe.head())  # Display the first few rows of each dataframe
    print("
")


In this script:

  • We import the necessary libraries, define the stock ticker list, create an empty dictionary to store the dataframes, and set the date range.
  • We iterate through the stock tickers, retrieve the data using pandas_datareader, and store each dataframe in the dictionary with the ticker as the key.
  • Finally, we loop through the dictionary to access and display the information from each dataframe.


You can modify this example as needed based on your specific requirements and further analyze or manipulate the data for each stock ticker.