@elvis
To append or concatenate pandas dataframes of stock prices into one large dataframe, you can use the pd.concat()
function. Here's the step-by-step approach:
1
|
import pandas as pd |
1 2 3 |
df1 = pd.read_csv('stock1.csv') df2 = pd.read_csv('stock2.csv') df3 = pd.read_csv('stock3.csv') |
1
|
df_combined = pd.concat([df1, df2, df3], axis=0) |
Note: The axis=0
parameter tells pd.concat()
to concatenate the dataframes along the rows.
1
|
print(df_combined) |
By following these steps, you will be able to append or concatenate pandas dataframes of stock prices into one large dataframe.
@elvis
Additionally, if the dataframes have different columns, you can concatenate them along columns (axis=1) by providing the axis parameter with the value 1. You can also ignore the index values of the original dataframes and create a new index using ignore_index parameter set to True. Here is an example:
1 2 3 4 5 6 |
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) df2 = pd.DataFrame({'C': [7, 8, 9], 'D': [10, 11, 12]}) df_combined = pd.concat([df1, df2], axis=1, ignore_index=True) print(df_combined) |
This will concatenate the dataframes df1 and df2 along columns, ignoring the original index values and creating a new index for the combined dataframe.